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Purpose: With the advent of whole-genome sequencing made 
 clinically available, the number of incidental findings is likely to 
rise. The false-positive incidental findings are of particular clinical 
 concern. We provide estimates on the size of these false-positive find-
ings and classify them into four broad categories.

methods: Whole-genome sequences (WGS) of nine  individuals 
were scanned with several comprehensive public annotation 
 databases and average estimates for the number of findings. These 
estimates were then evaluated in the perspective of various sources of 
false-positive annotation errors.

Results: At present there are four main sources of false-positive inci-
dental findings: erroneous annotations, sequencing error, incorrect 

penetrance estimates, and multiple hypothesis testing. Of these, the 
first two are likely to be addressed in the near term. Conservatively, 
current methods deliver hundreds of false-positive incidental find-
ings per individual.

conclusion: The burden of false-positives in whole-genome 
sequence interpretation threatens current capabilities to deliver 
 clinical-grade whole-genome clinical interpretation. A new  generation 
of population studies and retooling of the clinical decision- support 
approach will be required to overcome this threat.
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intROdUctiOn
In the spring of 2008, 19 years after the start of the Human 
Genome Project, a publication described how James Watson’s 
DNA had been fully sequenced for under 0.1% of the cost of 
the human genome using “next generation sequencing.”1 Less 
remarked at that time were the contents of Table 3 of that pub-
lication listing the variants found in Dr Watson’s genome that 
had been classically described as causing congenital diseases 
with Mendelian inheritance. Specifically, there were two vari-
ants for which he was homozygous. In other individuals, these 
two variants had previously been documented to be causal of 
Usher syndrome 1b (OMIM no. 276900) and Cockayne syn-
drome (OMIM no. 133540), diseases presenting typically at 
birth or early childhood. It seems very unlikely, based on 
what is publicly known, that Dr Watson suffers from these. 
Therefore, the publication of his genome might be regarded 
as a final warning of the deluge to come of incidental findings 
in genome-scale investigations—a downpour we have termed 
the incidentalome.2 Even now, the number of false-positive 
findings is growing3–5 and with the near-term availability of 
whole-genome sequencing for clinical diagnostics, these are 
likely to grow into a very large incidentalome. The scope of 
incidental findings addressed in this article is both broader 
and narrower than that defined by Wolf et al.6 Of the set of 
findings “concerning an individual research participant that 
[have] potential health or reproductive importance and [are] 
discovered in the course of conducting research but [are] 
beyond the aims of the study” we focus on the  false-positive 

incidental findings. False-positive incidental findings pro-
vide misleading and/or incorrect diagnostic or prognostic 
information and are, therefore, the most pernicious of the 
incidental findings; we focus exclusively on these. However, 
as we anticipate that whole-genome sequencing will become 
adopted in health-care delivery, the false-positive inciden-
tal findings obtained during a clinical care episode will also 
mushroom and, therefore, we include these incidental find-
ings in the scope of this study.

The incidentalome can be taxonomized into four com-
ponents. In order of increasing challenge, there is first, the 
substantial proportion of “textbook cases” of mutations 
documented to cause human disease in a highly penetrant 
Mendelian fashion, but they are incorrectly annotated in 
the databases. The second is the technical or measurement 
error rate in genome-scale sequencing. Third is the incorrect 
assignment of prior probabilities for much of our genetic and 
genomic knowledge. The fourth derives from testing multi-
ple hypotheses across millions of variants. We will describe 
here the nature of these components, provide rough esti-
mates for the magnitude of the problem, and point out exist-
ing approaches that will serve to control the growth of these 
aspects of the incidentalome. First, however, it is helpful to 
understand the magnitude of the interpretive challenge and 
the risks of false-positives by performing an example analysis 
of a whole-genome sequence (WGS) using the genomes of 
nine individuals of European descent sequenced by Complete 
Genomics.
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mAteRiALs And metHOds
subjects and WGss
We utilized the data set of publicly available genome sequences 
from nine unrelated HapMap individuals with European 
ancestry (NA06985, NA06994, NA07357, NA10851, NA12004, 
NA12889, NA12890, NA12891, and NA12892). These genomes 
were sequenced using a sequencing-by-ligation method at 
Complete Genomics.7 The sequences were downloaded from 
http://www.completegenomics.com/sequence-data/download-
data/ and imported into our in-house database for annotation 
and filtering as described later. The sequencing depths ranged 
from 64× to 88×. Each of the nine genomes was found to 
 contain a total of 3.6–3.9 million genomic variants, the majority 
of which are single-nucleotide polymorphisms, with the other 
12% consisting of insertions, deletions, or multiple-base sub-
stitutions. Among all the variants, ~0.6% were located within 
coding sequences.

Annotation and filtering of genomic variants
We developed a WGS analysis pipeline to annotate, filter, and 
analyze all the genomic variants presented in WGS. The pipe-
line, using MySQL database and PERL scripts, will be pub-
licly available as a Web tool (manuscript in preparation). The 
pipeline focuses on two major annotation modules: (i) allele 
frequency (AF) recalculated from multiple large data sources, 
and (ii) functional impact estimation based on protein-coding 
genes and evolutionary sequence conservation. The combina-
tion of these two annotation modules allowed variant filtering 
and gene selection in the subsequent steps.

Each variant was annotated by the AFs calculated from three 
large database sources, the Single Nucleotide Polymorphism 
database (dbSNP) build 132,8 the 1000 Genomes Project,9 
and 200 Exomes.10 A total of 180 populations with European 
ancestry where each data set had ≥15 individuals were selected 
from dbSNP build 132 for AF calculations. If the same allele 
was reported from multiple populations, the AF from the 
largest population was used. The genotypes of 629 individu-
als were obtained from the 1000 Genomes Project website 
(November 2010 release). The VCF tool (version 0.1.4a) was 
used to calculate AFs from 261 of those 629 individuals with 
European ancestries including Utah residents with Northern 
and Western European ancestry, Finnish in Finland, Toscani 
in Italy, and British in England and Scotland.11 The indel calls 
from the European subset of the same 629 individuals were 
obtained from the 1000 Genomes Project website (February 
2011 release). In addition, AFs based on 200 Exomes of Danes 
were obtained from the SOAPsnp website.10 To characterize 
the AFs, the four categories “common,” “less common,” “rare,” 
and “novel” were used.12 A “common” variant was defined by 
an AF ≥5% from any of the aforementioned three sources, 
and a “less common” variant was defined as an AF between 
1% and 5%. A “rare” variant was the one present in any of 
the three sources but with <1% AF from all the three, and a 
novel variant was defined by its absence from all of the three 
sources.

Annotations of all variants in known protein-coding genes 
were based on the RefSeq gene model (March 2011 release for 
hg18). By comparing each variant sequence with the canonical 
transcript sequences from the RefSeq, variants with (i) synony-
mous, (ii) missense, (iii) insertion, (iv) deletion, (v) frameshift, 
(vi) nonsense, (vii) nonstop, (viii) misstart, or (ix) disruptive 
(at splice sites) impacts were identified. The variants of type 
ii–ix are considered nonsynonymous. The functional impacts 
of missense variants on proteins were obtained from dbNSFP,13 
which precomputed scale-invariant feature transform14 and 
PolyPhen-215 scores on 75,931,005 possible nonsynonymous 
single-nucleotide polymorphisms based on CCDS, version 
20090327. A weighted-voting method of the Condel was used to 
derive weighed average scores combining both scale- invariant 
feature transform and PolyPhen-2.16

The sequence conservation was estimated based on the 
Genomic Evolutionary Rate Profiling (GERP) scores that were 
calculated based on sequence alignments of up to 30 other 
mammals for each locus in hg18.17 A higher GERP score indi-
cates an evolutionarily conserved locus. The GERP scores for 
single-nucleotide polymorphisms in the nine genomes were 
obtained by mapping their genomic coordinates with those 
in the GERP tables. For indels and substitutions, the average 
GERP scores were calculated from the bases between the start 
and the end of each variant. A locus was considered “highly 
conserved” for the subsequent analysis if the GERP score was 
>2. The known genomic variants associated with human dis-
eases were as indicated in the SafeGenes database,18 which inte-
grates annotations from the Human Gene Mutation Database,19 
OMIM,20 genome-wide association studies, Pharmacogenetics 
Knowledge Base,21 and dbSNP.8

After the aforementioned annotation steps, variants were 
 filtered based on a combination of criteria that include (i) rare 
or novel, (ii) nonsynonymous, (iii) located at highly conserved 
loci, (iv) deleterious on protein function, (v) homozygous, and 
(vi) disease association. The number of protein-coding genes 
containing variants that met the criteria was reported.

ResULts
The results of filtering all the known variants of the nine indi-
viduals’ genomes by various annotations and filters available 
are shown in Table 1 (see “Materials and Methods” section). 
For example, of the 3.8 million variants with respect to a ref-
erence genome found per individual, 3.1 million variants are 
known common variants, and 0.6 million variants are rare 
or novel variants. At the gene level, 400 genes per individual 
have rare or novel nonsynonymous variants at conserved loci. 
Of those, 136 are predicted to be deleterious. Also, 55 genes 
per individual have an average of 59 homozygous variants 
that are annotated as having an association, causal or purely 
statistical with diseases. Also, 65 genes presented with rare/
novel nonsynonymous variants at conserved loci across all 
nine genomes we analyzed, as shown in Figure 1. It may be 
that many, perhaps most of these findings will be true- positive 
incidental findings; however, as described in the following 
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there is good reason to believe that many of them are false-
positive incidental findings.

discUssiOn

inaccurate variant annotations
A recent study18 of all the mutations listed in several databases, 
including the OMIM,20 Human Gene Mutation Database,19 
Pharmacogenetics Knowledge Base,21 and dbSNP,8 found that 
the frequency of unresolved mutation annotations varied 
widely among the databases, ranging from 4 to 23%. In these 
instances neither the reference nor the mutated sequence was 
present at the specified location of the genome. This relatively 
large number of errors is explained by a small number of anno-
tation errors over the past few years and by a much larger num-
ber of coordinates and/or varied mutation descriptions that do 
not mesh with the modern state-of-the-art map of the genome. 
This is because many of these variants were discovered con-
siderably before the first human genome map draft was even 
assembled. As a result, these early annotations are inaccurate; 
however, given the rarity of these variants, a large proportion of 
them remain referred to in this fashion. The magnitude of this 

component of the incidentalome is not likely to grow due to the 
increasingly rigorous adoption of nomenclature standards and 
specific reference to genome “build” versions in the annotation 
reports. Moreover, the emergence of several for- and nonprofit 
international efforts22,23 to standardize the clinical annotations 
of the genome suggests that this aspect of the incidentalome 
will be soon resolved.

sequencing errors
The accuracies of ultra-high-throughput genome sequencing 
are reported to range from 95% to 99.9%.24–27 This level of per-
formance is a technological tour de force given the millions of 
short reads of DNA that have to be assembled to obtain a WGS. 
Nonetheless, even with 99.9% accuracy, across a billion bases, 
this entails up to one million technical errors. It also appears 
that some of these errors are nonrandom and reflect particu-
larities of the sequence context of specific parts of the genome.24 
Therefore, it is not surprising that one individual sequenced on 
two different sequencing platforms should appear different 
from the genomics perspective.28 Further, let us presume that as 
in Table 1 there are 455 variants across 400 genes found to be 
nonsynonymous, rare, and at highly conserved loci. Even with 
a generous estimate of global accuracy of 99%, whole-genome 
sequencing will nonetheless result in 4–5 variants erroneously 
reported. Fortunately, it seems likely that this aspect of the 
incidentalome will shrink in the near future. Whether through 
standardization in the follow-up of putative positives using 
alternative measurement means such as Sanger sequencing or 
genotyping of alleles, or through use of alternative “baits”29 and 
primers for particularly problematic regions, or through contin-
ued rapid-paced advances and improvements in performance 
of the sequencing technology itself, sequencing error rates will 
drop dramatically. Nonetheless, until then, sequencing error is 
likely to be a significant contributor to the incidentalome.

effect of genetic background and environment on  
penetrance
Fundamentally, the utility of the clinical annotation of a 
genomic variant is only as useful as its applicability to a 
patient. That is, if a variant were found to track with a disease 
in a specified group of patients, that annotation may in fact 
serve well if one belongs to that specific group of patients but 
serve rather poorly if one does not. A classic example of this 
is in hemochromatosis, in which >80% of individuals within 
a hereditary hemochromatosis clinic will have one of the 
known variants in the HFE gene.30 However, if one tests the 
general population as was done with over 40,000 patients at 
Kaiser Permanente,3 <1% of individuals who are homozygotes 
with the very same variants found in the hereditary hemo-
chromatosis clinic will show clinical, biochemical, historical, 
or familial evidence of hemochromatosis. Why the discrep-
ancy between <1% and 80%? Presumably, this is because the 
individuals for whom this disease was clinically ascertained 
(through history and physical exam, family history, or rou-
tine clinical laboratory tests) had shared genetic background 

table 1 Application of comprehensive annotation filters on 
nine putatively “normal” individuals of European descent 
with full-genome sequencing by Complete Genomics

Filtering number of 
genes/ 

individual

number of 
variants/ 
individual

Genes with rare/novel, nonsynonymous 
mutations at highly conserved loci

     400 ± 10 455 ± 9

Genes with rare/novel, nonsynonymous 
mutations at highly conserved loci and 
predicted to be deleterious

136 ± 6 147 ± 6

Genes with mutations implicated in 
disease

199 ± 3 226 ± 4

Genes with homozygous mutations 
implicated in disease

55 ± 2 59 ± 2

Genes with rare/novel mutations 
implicated in disease

3 ± 0 4 ± 0

Genes with rare/novel mutations 
implicated in disease and predicted  
to be deleterious

2 ± 0 2 ± 0

Shown here are the average numbers of genes per individual meeting the criteria 
specified in the table header/footnote and in the rightmost column the average 
number of variants per individual (i.e., there may be multiple variants per gene) 
meeting the criteria. 

Nonsynonymous: (impact based on the RefSeq gene model), includes mutations 
that cause disruption, frameshift, in-frame deletion, in-frame insertion, missense, 
misstart, nonsense, and nonstop. 

Conserved loci are those with a Genomic Evolutionary Rate Profiling score >2 
(ref. 17). Deleterious mutations are those computationally predicted to affect 
the phenotype based on the consensus program Condel.16 Disease association 
is based on annotations compiled in the SafeGenes database that includes the 
Human Gene Mutation Database, Online Mendelian Inheritance in Man (OMIM), 
genome-wide association studies, Pharmacogenetics Knowledge Base, and Single 
Nucleotide Polymorphism database annotations.18
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and/or shared environmental exposures. The effect of genetic 
background on penetrance (defined here as the conditional 
probability of disease given a genetic variant) has been well 
documented in mouse models where a disruption of a gene 
(e.g., HFE) will have significant effects in one strain and not 
in another.31 With respect to hemochromatosis, the effect of 
environmental exposure on mutation effect also appears to be 
 significant, such as the increased risk that comes from excessive 

alcohol consumption.32 Similar phenomena explain why the 
reported penetrance of the BRCA1/BRCA2 gene mutations 
has decreased markedly since the original publications33,34 
whereas the population to which this test has been applied 
has broadened. If the subject does not correspond well to the 
group studied for the originally reported finding, then these 
erroneous incidental findings are to be expected. This is par-
ticularly problematic as most of the mutations documented to 
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Figure 1 Overview of the genes with rare or novel nonsynonymous variants at conserved loci. Each row in the heatmap represents a unique transcript—a 
unique subsequence of the genome obtained during sequencing. The number of variants meeting the criteria of being nonsynonymous, rare, and conserved 
(see table 1 for definitions) was used to cluster transcripts and individuals. These numbers ranged from 0 (white) to the maximum of 13 (dark red) as shown in 
the color bar on the top right. Most variants were unique to each individual genome. Each individual presents an average of 222 such variants (range from 168 
to 260) that are shown as red blocks on the heatmap (left). A total of 65 transcripts had more than one variant in all nine genomes. The top part of the heatmap 
was zoomed in on the right, which reveals that the genes such as HYDIN, PDE4DIP, PRIM2, and SEC22B tend to have more than one rare/novel nonsynonymous 
variant at a conserved locus, consistently in all genomes analyzed. The identification of these “hypervariable” genes can help to reduce the false-positive 
findings, but even a residual small false-positive rate (e.g., 1%) will incur a substantial population-wide reporting burden, as described in the text.
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be highly penetrant (i.e., classical Mendelian genetics) are rare 
and have been found in a few families and the broader popula-
tions have not been genotyped for these variants. Therefore, 
of the hundreds of thousands of published disease-associated 
variants, an unknown but potentially large proportion will 
have a very different interpretation when applied to the gen-
eral population. This challenge is particularly marked when 
the subject comes from a different ethnicity than the general 
population.28 The most direct path to addressing this compo-
nent of the incidentalome is the commoditization and subse-
quent widespread application of whole-genome sequencing to 
large populations.35 Particularly, if these sequences are linked 
to detailed clinical phenotypes (e.g., from the electronic med-
ical record36), we will have for the first time empirical esti-
mates of the frequency of a large swath of mutations in clini-
cal subpopulations of interest and in the general population 
and thereby will be able to accurately estimate penetrance for 
those populations. That is, we will be able to calculate data-
driven positive predictive values, as we do for many clinical 
laboratory tests. This in turn will reduce the frequency with 
which these variants are falsely reported to increase the prob-
ability of a trait/disease. An immediate but controversial alter-
native would be to only perform (or report on) genetic vari-
ants when there is a clinical suspicion of the disease, whether 
through family history or clinical findings.

Genomic individualization reduces the availability of  
relevant comparison groups
We just described the challenge of comparing an individual to 
a group for which there is a known annotation that links a vari-
ant to disease. What about looking at all the individual’s vari-
ants? Even if we obtain population-wide priors through exten-
sive full-genome sequencing of entire populations, the very fact 
of a person’s individuality when considering all variants in the 
genome will ensure that no comparison to any particular group 
will be perfectly appropriate. That is, when we perform multiple 
comparisons, as we will, when assessing each of hundreds of 
thousands to millions of variants for their clinical significance, 
we apply the knowledge of the meaning of each variant (i.e., 
the conditional probability of disease given the variant) with 
respect to a specific population that may or may not resemble 
the subject. If we treat each of these genetic variant–disease 
relationships as independent, then we should not be surprised 
that if we test each variant with 100% sensitivity and 99.9% 
specificity, merely 10,000 independent genetic variants associ-
ated with rare diseases will lead to more than half the entire 
population labeled with a false-positive risk/diagnosis.2 The 
problems for clinical care then may well dwarf those entailed 
by incidental findings in research. As we originally articulated 
in our 2006 publication,2 this proportion of false-positives will 
not only lead to concern and frustration on the part of con-
sumers and health-care providers but ultimately lead insurers 
who are already reluctant to pay for genetic testing to object to 
payments for follow-up tests and investigations driven by such 
false-positive-finding-saturated approaches.

A purely statistical remedy to this multiple hypothesis–test-
ing problem appears elusive. Even if an individual’s phenotype 
and health state were fully determined by genetics, we could not 
expect to determine which of these multiple comparisons were 
most appropriate. How would we know which subset of genetic 
variants made one individual similar to a group of interest (e.g., 
a group with a specific disease)? Consider the simplest problem 
of determining which group an individual is most similar to, 
not across all variants but just pairs of them. Even if the entire 
global human population (7 × 109) were fully sequenced, this 
would be woefully inadequate to assess the relationship of all 
the pairs (1010) of the one hundred thousand variants associ-
ated with disease. This suggests that our burgeoning but still 
fragmentary knowledge of molecular biology and the systems 
structure of genetic regulation will be required to overcome the 
multiple hypothesis–testing problem. In the interim, we may 
find that we have to purposely ignore most of the variants in 
the genome, focusing on small combinations of those that have 
the largest effects. In doing so, we will be recognizing what was 
realized early in the era of automated decision-making, long 
before the Human Genome Project: purely probabilistic rea-
soning approaches are too data hungry for even small clinical 
decision-making challenges.37 When the probabilistic approach 
alone is inadequate, expert clinicians will complement proba-
bilistic assessments with categorical and heuristic reasoning 
based on an assessment of how the patient fits known groups of 
pathophysiology based on their understanding of the patient’s 
state and their understanding of physiology and its various 
pathobiologies. In this context, it would be quite ironic if one 
of the consequences of the genomic revolution and the surfeit 
of variables available to characterize patients would result in the 
revalorization of clinicians with deep pathophysiological knowl-
edge and deep evidence-based expertise who are current with 
genomic literature and/or the genomic-database equivalents.

conclusion
Whole-genome sequencing as it is performed today has a sub-
stantial burden of incidental findings that falsely report on the 
present or future state of the individual. As described earlier, the 
sources of these incidental findings—erroneous disease anno-
tations of the genome, sequencing error, incorrect estimates of 
penetrance, and genomic individuality—can be addressed sys-
tematically over the coming years. At present, an unmediated, 
wholesale release of incidental finding interpretations to study 
subjects or patients38,39 has clear and imminent potential for 
harm. We have argued previously40 that interposing an expert 
body, informed by an understanding of the current accuracy of 
genome-scale testing, relevance of specific results, knowledge 
of patient-specific characteristics,41 and respect for patient pri-
vacy and autonomy is required to safely communicate genome-
scale interpretations. If, as we anticipate, the magnitude of 
false-positive incidental findings is reduced to a level that can 
be managed by well-trained clinicians and mechanisms are pro-
vided for patients and subjects alike to readily obtain additional 
clarification and personalized decision support, then the need 
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for mediated release of genomic incidental findings will cor-
respondingly diminish.
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